Activity 1

LO: To identify and compare the different angles.

Greater Depth 1
Here are five angles. There are two pairs of identically sized angles. Which angle is the odd one out? Explain your reason.

Greater Depth 2
Rod has two angles A and B. He says that angle B is bigger than angle A because it has longer sides. Do you agree with Ron? Explain your answer.

Angle B is bigger than Angle A because it has longer sides.

Activity 2

LO: To compare and classify quadrilaterals based on their properties and sizes.

Core skill - Label the quadrilaterals using the word bank.

Watch the video to help you identify the quadrilaterals.
https://watchkin.com/c06a33016b

- Rhombus
- Square
- Parallelogram
- Rectangle
- Trapezium

Write the properties for these 5 quadrilaterals into your book.
Parallel lines are lines that never meet. Watch the video to remind yourself of the vocabulary.
https://watchkin.com/4838650bb5

Name	Types of angles	Parallel lines	Equal sides
Rhombus			
Square			
Parallelogram			
Rectangle			
Trapezium			

Depth Task

What is the same about these two shapes and what is different?

Greater Depth 1
Sophie thinks that the shape matches her statement.
Is she correct? Explain your answer.

Greater Depth 2
Robert thinks that the shape matches his statement. Is he correct? Explain your answer.

Activity 3

LO: To compare and classify triangles based on their properties and sizes.

Core skill - What the video to refresh your knowledge about different triangles.
https://watchkin.com/2f1f778ad3
Sort the triangles underneath the correct headings. Use a ruler to measure the length of each side.

Depth task 1

1. What are the differences between these two triangles?
2. What is similar about them?

Greater Depth 1
Draw the shape using the description below:

- 2 pairs of equal sides
- No right angles
- Not a parallelogram

What shape have you drawn?

Depth task 2
Read these statements. Explain why they are true or false.

- A scalene triangle never has equal length sides.
- An isosceles triangle can never have a right angle.
- An isosceles triangle has three equal angles.
- An equilateral triangle has three equal length sides.

Greater Depth 2
Draw the shape using the description below:

- 1 pair of equal sides
- 1 pair of parallel lines (unequal in length)
- No right angles

What shape have you drawn?

Activity 4

LO: To plot specified points and draw sides to complete a given polygon.
Watch the video that explains how to read coordinates. https://watchkin.com/7eb787968f

Depth - Match the clues with the coordinates.

Greater Depth 1
When you are plotting a point on a grid it does not matter whether you go up or across first as long as
 you do one number on each axis.

Do you agree with Amir? Explain it.

Activity 5

LO: To complete a simple symmetric figure with respect to a specific line of symmetry.

Core skill - Complete the symmetric figure, or pattern by shading the correct squares. Remember to check your answer with a mirror.

Answers
Activity 1

Core skills Complete the table with missing information. Use the information below: - Right angle - An angle that is more than 90° but less than 180°. - An angle that is less than 90°.			
	Angle	Description	Draw the angle
	Acute	An angle that is less than 90°	
	Right angle	An angle that is exactly 90°	
	Obtuse	An angle that is more than 90° but less than 180°	

Depth task					
88°	One hundred degrees	90°	One hundred and thirty degrees	179°	Five degrees
Eleven degrees	126°	Forty five degrees	150°	Ninety degrees	69°

Acute angle	Obtuse angle	Right angle
	One hundred degrees	
Five degrees	126°	
Eleven degrees	One hundred and thirty	Ninety degrees
Forty five degrees	degrees	90°
69°	150°	
88°	179°	

Greater Depth 1

- Angle e is the odd one out because it is an Obtuse angle.
- Angle b and c are both Right angles.
- Angle a and d are both Acute angles.

Greater Depth 2

Angle A and B are the same size because they are both Acute angles.
The length of the sides doesn't show how big an angle is.

Core skill - Label the quadrilaterals using the word bank.

Core skill - Write the properties for these 5 quadrilaterals into your book.

Name	Types of angles	Parallel lines	Equal sides
Rhombus	$\mathbf{2}$ acute $\mathbf{2}$ obtuse	Opposite sides are parallel $\mathbf{2}$	$\mathbf{4}$
Square	$\mathbf{4}$ right angles	Opposite sides are parallel $\mathbf{2}$	$\mathbf{4}$
Parallelogram	$\mathbf{2}$ acute $\mathbf{2}$ obtuse	Opposite sides are parallel $\mathbf{2}$	$\mathbf{2}$
Rectangle	$\mathbf{4}$ right angles	Opposite sides are parallel $\mathbf{2}$	$\mathbf{4}$
Trapezium	$\mathbf{2}$ acute $\mathbf{2}$ obtuse	$\mathbf{1}$	$\mathbf{2}$

Depth Task

What is the same about these two shapes and what is different?

Same: 4 equal sides and 4 right angles
Different: orientation (direction)

Greater Depth
Sophie is incorrect as a regular quadrilateral must have all sides and angles equal and a rectangle does not have all
sides equal.

Greater Depth
Robert is incorrect as a trapezium only has 1 pair of parallel sides.

Activity 3

Core skill Sort the triangles under the correct headings	
Scalene Isosceles	Equilateral
D ${ }^{\text {D, }}$ (A
Depth task 1. What are the differences between these two triangles? A has a right angle. A has shorter sides. B has taller sides. 2. What is similar about them? They are both are isosceles triangles.	Read these statements. Explain why they are true or false. - A scalene triangle never has equal length sides. True all the sides are different lengths. - An isosceles triangle can never have a right angle. False - An isosceles triangle has three equal angles. False only two sides are the same length. - An equilateral triangle has three equal length sides. True
Greater Depth 1 Draw the shape using the description below: - 2 pairs of equal sides - No right angles - Not a parallelogram What shape have you drawn? Rhombus	Greater Depth 2 Draw the shape using the description below: - 1 pair of equal sides - 1 pair of parallel lines (unequal in length) - No right angles What shape have you drawn? Trapezium

Core skill $(2,9)$ pizza $(6,2)$ burgen $(4,3)$ water $(9,7)$ cola $(5,6)$ choc cake $(1,3)$ yoghurt	
1. burger 2. juice 3. cake 4. milkshake	
Depth task Clue 1 = B Clue 2 = A Clue $3=C$	 Which clue matches which coordinate?
Greater Depth task Amir is incorrect. The x-axis must be plotted before the y-axis.	

Core Skill

Depth task
Carrie says, "A symmetrical pattern on a grid cannot have more than two lines of symmetry." Is she correct? No

1. Draw your own pattern, with more than two lines of symmetry.

You should have drawn a simple pattern showing horizontal, vertical and diagonal symmetry like the example here.
2. Can you shade the squares to create a pattern on a grid?

Multiple answers possible.

Greater Depth
a) What is the smallest number of squares you would have to shade to make a symmetrical pattern, if the line of symmetry was vertical as shown here? 3
b) Draw a horizontal or diagonal line of symmetry on the grid and shade the fewest squares you can to make a symmetrical pattern. Multiple answers.
c) Are there places on the grid where the line of symmetry can't go?The line of symmetry can't go so close to the edge of the grid that there aren't enough squares on the other
 side of the line to complete the pattern.

